

CIFRE 2012/1161

EVALUATION OF THE CONTRIBUTION OF A MARINE HEMOGLOBIN IN THE CULTURE OF MESENCHYMAL STEM CELLS FOR BONE AND MENISCUS TISSUE ENGINEERING.

> Fiona LE PAPE **EFS Bretagne – Brest, France**

INSERM U1078 : Génétique et génomique fonctionnelles et biotechnologie HEMARINA S.A – Morlaix, France

Mesenchymal stem cells (MSC)

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

Undifferentiated cells Self-renewal capacity Multipotency

Adult stem cells:

MSCs and tissue engineering

Introduction

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

- Advantages:

MSCs

- *In vitro* isolation and expansion
- Plasticity
- Immunomodulating capacity
- Homing capacity
- No ethical controverse (O'Byrne, 2013)

Origines of MSCs

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

Classical sources of MSCs:

1- Bone arrow

2- Fate

3- Cord blood (- 12 h, few cells)

•Also in: amniotic fluid, menstrual blood, human scalp, dental pulp, synovial fluid, periosteum, skeletal muscle, conjunctiva of the eye.

(Sharma et al, 2014. Transfusion.)

Experimental studies with MSCs

(Sharma et al, 2014. Transfusion.)

MSC and Tissue Engineering

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

•<u>Current studies</u>: Tissue Repair

- Régénération vasculaire
- Réparation osseuse et maladie des os (ostéogenèse imparfaite) (Grayson, 2015)
- Régénération du cartilage (Pastides, 2013)
- Régénération cornéenne (in vitro et in vivo) (Harking, 2014)
- Ulcère chronique de jambe (d'origine veineuse) (Dash, 2009)
- Maladie neuronale (différenciation dopaminergique) (Nadri, 2008)
- Régénération cardiaque (Mietten, 2012; Yang, 2010, Hare, 2009)
- Réparation de la peau (Guhathakurta, 2009; Lataillade, 2007)

Meniscus Tissue Engineering

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

(from P.Beaufils, MO 2011)

Fresh grafts

dailysportstack.com

Examples of meniscal substitutes:

States and the second second

Frezz grafts

Synthetic substitute (Actifit®, Orteq)

Biological substitute MENISC-T (TBF)

- No spontaneous healing
- Cell type not totally characterized
- Important for joint stability and articular congruence

Meniscus Tissue Engineering

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

Bone Tissue Engineering

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

http://www.dr-julien-sin.chirurgiens-dentistes.fr

- Bone maxillofacial grafting
- To build a stable base for a denture
- Osteo-integration

Examples of bone subtitutes:

Calcium carbonate (Corail)

Albumine-based scaffold (Li *et al*, 2014.)

Decellularized human bone (BIOBank®)

The sypply of oxygen and nutrients is critical for graft survival and long-term integration. (Grayson *et al*, 2015.)

Bone Tissue Engineering

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

69

Osteo-induction

Osteo-conduction

Osteo-genicity

• 2 grandes étapes :

factors:

BMP7...

Eau oxygénée Soude Ethanol

Gamma radiosterilization

Osteo-integration / osteogenesis

Tissue Engineering

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

Association of MSCs and biocompatible substituts to dynamize scaffolds → cellularization remains incomplete in the innermost (Buma *et al*, 2004; Wendt *et al*, 2003)

Causes?

Lack of oxygen diffusion through the scaffold

Exhaustion of nutrients

Accumulation of cellular wastes

Solutions:

To work with an oxygen carrier to provide oxygen to the cells according to their needs To improve nutrients renewal

Marine hemoglobin

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

North Atlantic coast beaches

Characteristics:

- Extracellular

- Autonomous

- Universal Hb

Extracellular hemoglobin

(Rousselot et al,

2006; Zal et al, 1997)

French biotechnology startup HEMARINA (Morlaix, France)

- A.marina Hb = 3.6 MDa vs Human Hb = 68 KDa

- Can bind 156 oxygen molecules (only 4 for humans)
- Antioxidant (SOD-like activity)

Arenicola marina

Nereis virens

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

<u>1- Induction of fibrochondrogenesis</u>

<u>1- Induction of fibrochondrogenesis</u>

2 - Gene expression analysis by RT-qPCR in a panel of 84 MSC-related genes

Objectives

Introduction

Meniscal cells

20	CII	411	0
20	Cu	itui	C

3D culture

Conclusion

Prospects

END

	Overexpressed genes (vs MSCs)	Underexpressed genes (<i>vs</i> MSCs)	
Co-cultured MSCs	1	40	
Fibrochondrocytes	5	7	
Chondrocytes	7	6	

Data indicate similarities in gene expression profiles between cell types. They also suggest that co-culturing induces differentiation of MSCs towards the cell type of interest

*p<0.05, ** p<0.005, *** p<0.0005 (n=3)

3-Searching for protein biomarkers

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

Comparative studies between chondrocytes, fibrochondrocytes, and MSCs proteomes

В

D

Introduction

Objectifs

Cellules méniscales

Culture 2D

Culture 3D

Conclusion

Perspectives

Conclusion

4- Development of two-dimensional gel electrophoresis (2D)

Examples of 2D electrophoretic gels (100µg total protein extract/ MSC sample):

Optimisation of Mesenchymal Stem Cell functions and proliferation: Investigation of the benefits of a new oxygen carrier, HEMOXCell®, in platelet lysate-supplemented media.

<u>Fiona Le Pape</u> 1,2, Lucie Cosnuau-Kemmat 2, Elisabeth Leize 1,3, Frédéric Dubrana 4, Claude Férec 1,4,5, Morgane Rousselot 2, Franck Zal 2, and Pascal Delépine 1,5*

En soumission au journal Stem Cell research

<u>1 – In vitro growth analysis</u>

Introduction

Objectives

Meniscal

cells

2D culture

3D culture

Conclusion

Prospects

END

Low concentrations of HEMOXCell® improve MSC 2-D culture

*p<0.05

Annexin V-FITC Apoptosis Detection Kit (SIGMA)

Introduction

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

MSCs conserved their plasticity + HEMOXCell® 0.025 g/L

Introduction

Objectives

Meniscal

cells

2D culture

3D culture

4- Flow cytometry analysis of MSCs phenotype

Co-expression: CD105+/CD90+ and CD105+/CD73+ Negative markers: CD14- CD20- CD34- CD45-

MSCs conserved their phenotype with HEMOXCell® 0.025 g/L

Conclusion

Prospects

END

5- Analysis of 84 MSC related gene expression

(RT² Profiler PCR Array (Qiagen)

(cut-off -4 (downregulated genes) and >4 (overexpressed genes))

Introduction

<u>6 – F-actin cytoskeleton analysis</u>

Alexa Fluor® 594 Phalloidin

1- Development of analysis techniques for the meniscal substitute (MENISC-T, TBF)

•Cryostat histological section: H&E staining

- DMEM medium

Objectives

Introduction

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

1- Development of analysis techniques for the bone substitute (BioBank®)

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

• Scanning electron microscopy (SEM) photographs (24h)

Confocal microscopy: Immunolabeling

2 days

21 days

Live/dead® Viability/cytotoxicity Kit (Invitrogen)

(Green: live cells, red: dead cells)

3- Development of perfusion culture system

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

↑ homogeneous cellularization↑ nutrient diffusion

3- Development of perfusion culture system

Introduction

Objectives

cells

END

Validation of bone cylinders (8 mm x 4 mm) for the perfusion system U-Cup (CellekBiotek) MTT solution (living cells in purple)

MTT staining

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

4- Development of bone section analysis

Bone decalcification assay :Decalcifier I Optimal incubation time of 1h. (7µm sections, HE staining)

In conclusion

Introduction

Objectives

Meniscal cells

2D culture

3D culture

Conclusion

Prospects

END

Axis 1- Characterization of meniscal cell type

1 and 2 - MSCs co-cultured with fibrochondrocytes exhibit a gene expression profile similar to chondrocytes and fibrochondrocytes.

3- The firsts results for fibrochondrocytes biomarkers are promising

4- Comparative 2D profiles analysis

Axis 2- Impact of HEMOXCell® in MSC 2D culture

0.025 g/L HEMOXCell® was found to be optimal to promote MSC proliferation (+25%) without impacting cell adhesion and characteristics.

Axis 3- Impact of HEMOXCell® in MSC 3D culture

Meniscal and bone scaffolds are well-suited for cell adherence, viability and proliferation. Most analysing protocols have been developed.

Perspectives

Axis 1- Characterization of meniscal cell type

1 and 2 - MSCs co-cultured with fibrochondrocytes exhibit a gene expression profile similar to chondrocytes and fibrochondrocytes.

- \rightarrow This observation will be confirmed with fibroblaste samples as controls
- 3- The firsts results for fibrochondrocytes biomarkers are promising
- ightarrow Ongoing analysis with Strasbourg
- 4- Comparative 2D profiles analysis
- \rightarrow Ongoing analysis with PurlProB (Brest)

Axis 2- Impact of HEMOXCell® in MSC 2D culture

0.025 g/L HEMOXCell® was found to be optimal to promote MSC proliferation (+25%) without impacting cell adhesion and characteristics.

→ A ROS staining analysis will be preformed (Manuscript in submission)

Axis 3- Impact of HEMOXCell® in MSC 3D culture

Meniscal and bone scaffolds are well-suited for cell adherence, viability and proliferation. Most analysing protocols have been developed.

 \rightarrow These protocols will be performed on 3D scaffolds after culture under perfusion

Thank you

India Contact:

LIFE TECH /

Life Technologies (India) Pvt. Ltd. 306, Aggarwal City Mall, Opposite M2K Pitampura, Delhi – 110034 (INDIA). Ph: +91-11-42208000, 42208111, 42208222 Mobile: +91-9810521400 Fax: +91-11-42208444 Email: customerservice@lifetechindia.com Web: www.lifetechindia.com

Hemarina vous présente ses meilleurs vœux pour cette nouvelle année.

