ATZ Labs - a subsidiary of Life Technologies (India) Pvt. Ltd.
Life Technologies India
PhytoTechnology Laboratories

Bialaphos Sodium Salt
Product ID: B131

Introduction

Description: Bialaphos is a tripeptide antibiotic with herbicidal properties that is employed in plant transformation for selection of cells containing either the bar or the pat gene.
See product info sheet for more information.
Synonyms: SF-1293, Bilanafos

Solubility Water
Physical Form Solid
Storage Temp. -20 °C
UPC / SKU B131
CAS NUMBER 71048-99-2
Formula Weight 345.26
Formula C11H21N3NaO6P
Synonyms SF-1293, Bilanafos
Storage Temp. -20 °C
Tariff Code 2941.90.6000
Risk Info (R) 20/21/22
Safety Info (S) 22-24/25-36/37/39
No information available

B131 Bialaphos

Synonym: Bialaphos Sodium Salt, Bilanafos, Phosphinothricin Tripeptide (PTT), SF-1293
CAS: 71048-99-2
Formula: C11H21N3NaO6P
Molecular Wt: 345.27
Properties
Form: Powder
Appearance: Yellow to Orange
Application: Antibiotic, Selection Agent, Plant Growth Regulator
Solubility: Soluble in Water
Typical Working Concentration: Generally 1-3mg/L for selection media,10 mg/L and higher concentrations maybe usedbut results are highly dependent upon plant tissue type. Optimal concentrations should be determined by the end user.
Storage Temp: -20-0 ºC
Storage Temp of Stock Solution: -20-0 ºC

Application Notes
Bialaphos is a tripeptide antibiotic with herbicidal properties that is employed in transformation research in many plant species that contain the bar gene for selection purposes.

Bialaphos has plant growth regulating properties at low concentrations and herbicidal propert ies at high concentrations. It wa s isolated from Streptomyces viridochromogenes (Kumada et al., 1988) and inhibits the function of the enzyme glutamine synthetase (GS) (Schwartz et al., 2005) . Inhibition of GS leads to ammonia build up in plant cells and eventually death unless the bar or pat gene is present to confer resistance to bialaphos (Charudattan et al., 1996).

After biala phos is taken into cells, it is converted into phosphinothricin through hydrolysis via the phosphinothricin acetyl transferase enzyme (Thompson et al., 1987).

References
Arulselvi I, P.Michael, S. Umamaheswari and S. Krishnaveni (2010) Agrobacterium medi ated Transformation of S orghum bicolor for disease resistance. International Journal of Pharma and Bio Sciences. 1:4.
Casas A.M., Andrzej K. Kononowicz, Usha B. Zehr, Dwight T. Tomes, John D. Axtell, Larry G. Butler, Ray A. Bressan and Paul M. Hasegawa (19 93) T ransgenic S orghum plants v ia microprojectile bombardment. Proceedings of the National Academy of Sciences of the United States of America . 90 : 23, P p. 11212 - 11216.
Charudattan R., V. J. Prange, J. T. Devalerio (1996) Exploration of the use of the "bia laphos genes" for improving bioherbicide efficacy. Weed Technology , 10:3.
D e Block M , J.Botterman, M.Vandewiele, J.Dockx, C.T hoen, V.Gossele, N.Rao Movva, C.Thompson , M.Van Montagu and J.Leemans (1987) Engineering herbicide resistance in plants by express ion of a detoxifying enzyme . The EMBO Journal 6:9 pp.2513 - 2518. Merck 13, 7425.
Grootbroom AW, NL Mkhonza, MM O'Kennedy, E Chakauya, K Kunert and RK Chikwamba (2010) Biolistic Mediated Sorghum ( Sorghum bicolor L. Moench) Transfor mation v ia Mannose and Biala phose Based Selection Systems. Internation al Journal of Botany , 6 (2): 89 - 94.
Jube S. and Dulal Borthakur (2007) Expression of bacterial genes in transgenic tobacco: methods, applications and future prospects. Electron J Biotechnol . 10(3): 452 - 467.
Kamo K And Joyce Van Eck (1997) Effect of bialaphos and phosphinothricin on plant regeneration from long - and short - term callus cultures of gladiolus. In Vitro Cell. Dev. Biol. - Plant 33:180 - 183.
Kumada Y., H. Anzai, E. Takano, T. Murakami, O. Hara, R. Itoh, S. Im a, A. Satoh and K. Nagaoka (1988) The bialaphos resistance gene ( bar ) plays a role in both self - defense and bialaphos biosynthesis in Streptomyces hygroscopicus . The Journal of Antibiotics. Vol XLI, No. 12. Pp 1838 - 1845.
Leung H., Pat Loomis, and Martin L . Pall. " Transformation of Magnaporthe grisea to phosphinothricin resistance using the bar gene from Streptomyces hygroscopicus." Department of Plant Pathology, Washington State University, Pullman, WA 99164 - 6430. < http://www.fgsc.net/fgn42/leung.html > Accessed: [10/31/2011 2:12:16 PM].
Schwartz D, S. Berger, E. Heinzelmann, K. Muschko, K. Welzel, and W. Wohlleben (2004) Biosynthetic Gene Cluster of the Herbicide Phosphinothricin Tripeptide from Streptomy ces viridochromogenes Tu494. Applied And Environmental Microbiology 70:12 Pp. 7093 - 7102.
Schwartz D, N. Grammel, E. Heinzelmann, U. Keller and W. Wohlleben (2005) Phosphinothricin Tripeptide Synthetases in Streptomyces viridochromogenes Tu ¨494 . Antimicrobia l Agents And Chemotherapy , 49:11, Pp. 4598 - 4607.
Thompson CJ , N.R . Mova a , R . Tizard, R . Crameri, J.E. Davies , Marc Lauwereys and Johan Botterman (1987) Characterization of the herbicide - resistance gene bar from Streptomyces hygroscopicus . The EMBO Journal 6 : 9 pp.2519 - 2523.