Introduction
Description: Bialaphos is a tripeptide antibiotic with herbicidal properties that is employed in plant transformation for selection of cells containing either the bar or pat gene.
See product info sheet for more information.
Synonyms: SF-1293, Bilanafos.
Miscibility |
Water |
Physical Form |
Liquid |
Concentration |
1 mg/mL |
Sterility |
Sterile Filtered |
Storage Temp. |
-20 °C |
UPC / SKU |
B1730 |
CAS NUMBER |
71048-99-2 |
Formula Weight |
345.26 |
Formula |
C11H21N3NaO6P |
Synonyms |
SF-1293, Bilanafos |
Additional Charge |
Dry Ice ($15) |
Storage Temp. |
-20 °C |
Tariff Code |
2941.90.6000 |
Risk Info (R) |
20/21/22 |
Safety Info (S) |
22-24/25-36/37/39 |
No information available
B1
730
Bialaphos
Solution
(1 mg/mL)
Synonym: |
Bialaphos Sodium Salt, Bilanafos, Phosphinothricin Tripeptide (PTT), SF-1293 |
CAS: |
71048-99-2 |
Formula: |
C11H21N3NaO6P |
Molecular Wt: |
345.27 |
Properties |
Form: |
Liquid |
Appearance: |
Yellow to Orange, Clear |
Application: |
Antibiotic, Selection Agent, Plant Growth Regulator |
Solubility: |
Miscible with Water |
Typical Working Concentration: |
Generally 1-3mg(mL)/L for selection media,10 mg(mL)/L and higher concentrations maybe used but results are highly dependent upon plant tissue type. Optimal concentrations should be determined by the end user. |
Storage Temp: |
-20-0 ºC |
Other Notes: |
Sterile filtered. Plant tissue culture tested. |
Application Notes
Bialaphos is atripeptide antibioticwith herbicidal properties that is employed in transformation research inmany plant species that contain thebaror pat gene for selectionpurposes.
Bialaphos hasplant growth regulating properties at low concentrations and herbicidal properties at high concentrations. It was isolated from Streptomycesviridochromogenes (Kumada et al., 1988)and inhibits the function of the enzyme glutamine synthetase (GS)(Schwartz et al., 2005). Inhibition of GS leads to ammonia build up in plant cells and eventually death unless the baror patgene is present to confer resistance to bialaphos(Charudattan et al., 1996).
Afterbialaphos is takeninto cells, it isconverted into phosphinothricinthrough hydrolysisvia the phosphinothricin acetyl transferase enzyme(Thompson et al., 1987).
References
Arulselvi I, P.Michael, S. Umamaheswari and S. Krishnaveni (2010) Agrobacterium mediated Transformation of Sorghumbicolor for disease resistance. International Journal of Pharma and Bio Sciences. 1:4.
Casas A.M., Andrzej K. Kononowicz, Usha B. Zehr, Dwight T. Tomes, John D. Axtell, Larry G. Butler, Ray A. Bressan and Paul M. Hasegawa (1993) Transgenic Sorghum plants via microprojectile bombardment.Proceedings of the National Academy of Sciences of the United States of America.90:23, Pp. 11212-11216.
Charudattan R., V. J. Prange, J. T. Devalerio (1996) Exploration of the use of the "bialaphos genes" for improving bioherbicide efficacy. Weed Technology, 10:3.
De BlockM, J.Botterman, M.Vandewiele, J.Dockx,C.Thoen, V.Gossele, N.Rao Movva, C.Thompson,M.Van Montagu and J.Leemans(1987) Engineering herbicide resistance in plants by expression of adetoxifying enzyme. The EMBO Journal6:9 pp.2513-2518.Merck 13, 7425.
Grootbroom AW, NL Mkhonza, MM O’Kennedy, E Chakauya, K Kunert and RK Chikwamba (2010) Biolistic Mediated Sorghum (Sorghumbicolor L. Moench) Transformation via Mannose and Bialaphose Based Selection Systems. InternationalJournal of Botany, 6 (2): 89-94.
Jube S. and Dulal Borthakur (2007) Expression of bacterial genes in transgenic tobacco: methods, applications and future prospects. Electron J Biotechnol.10(3): 452–467.Kamo K And Joyce Van Eck (1997) Effect of bialaphos and phosphinothricin on plant regeneration from long-and short-term callus cultures of gladiolus. In Vitro Cell. Dev. Biol.-Plant33:180-183.
Kumada Y., H. Anzai, E. Takano, T. Murakami,O. Hara, R. Itoh, S. Ima, A. Satoh and K. Nagaoka (1988) The bialaphos resistance gene (bar) plays a role in both self-defense and bialaphos biosynthesis in Streptomyces hygroscopicus. The Journal of Antibiotics. Vol XLI, No. 12. Pp 1838-1845.
Leung H., Pat Loomis, and Martin L. Pall. “Transformation of Magnaporthe grisea to phosphinothricin resistance using the bargene from Streptomyces hygroscopicus.”Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430. <http://www.fgsc.net/fgn42/leung.html> Accessed: [10/31/2011 2:12:16 PM].
Schwartz D, S. Berger, E. Heinzelmann, K. Muschko, K. Welzel, and W. Wohlleben (2004) Biosynthetic Gene Cluster of the Herbicide Phosphinothricin Tripeptide from Streptomyces viridochromogenesTu494. Applied And Environmental Microbiology70:12 Pp. 7093–7102Schwartz D, N. Grammel, E. Heinzelmann, U. Keller and W. Wohlleben (2005) Phosphinothricin Tripeptide Synthetases in Streptomyces viridochromogenesTu ̈494. Antimicrobial Agents And Chemotherapy, 49:11, Pp. 4598–4607.
Thompson CJ, N.R.Movaa, R.Tizard,R.Crameri, J.E. Davies, Marc Lauwereysand Johan Botterman(1987) Characterization of the herbicide-resistance gene barfromStreptomyces hygroscopicus. The EMBO Journal6:9 pp.2519-2523.