

Mouse Tail

Version: 1.0

Revision date: 31-07-2014

Description

GenePurgeDirect® is composed of proprietary polymeric materials that quickly facilitate the release of nucleic acids from cells in a form suitable for PCR. By segregating inhibitors that are released during lysis and preservation agents that may interfere with amplification, GenePurgeDirect® provides amplifiable nucleic acids from minute amounts of material. This manual offers 2 alternate protocols, one tissue homogenization and one Proteinase K digestion.

Protocols

GenePurgeDirect® Protocol for Mouse Tail with Tissue

Homogenization Part I: Mouse Tail Homogenization

- 1. Cut a 1mm thick section from the either fresh or frozen mouse tail that has been rinsed with sterile water to remove any surface contamination and place the section into the bottom of a 1.5 ml tube.
- 2. Add $25\mu l$ of 1X TE to the tube containing the sectioned tail tissue.
- 3. Mince the section of tissue by thrusting a pestle against the tissue and twisting the pestle to compress the tissue against the walls of the tube. Ten thrusts with the pestle are sufficient.
- 4. Place the tube containing the homogenate at 4°C as each specimen is homogenized.

Part II: GenePurgeDirect® Treatment

- 5. Transfer 1µl of the tissue homogenate obtained above into a 0.5 ml standard amplification tube. NOTE: flick the tube containing the homogenate 3 times to mix before transfer.
- 6. Resuspend the GenePurgeDirect® mixture by vortexing 2-3 seconds or inverting 510 times.
- 7. Add 20ul of GenePurgeDirect® suspension to the 1ul of homogenate in the PCR tube and tightly close the tube lid.
- 8. Pulse vortex briefly to mix.
- 9. Place samples onto thermal cycler, with a heated lid, with the following GenePurgeDirect® lysis program:

Step	Temperature	Time
1.	65ºC	30 sec.
2.	85C	30 sec.
3.	65ºC	90 sec.
4.	97ºC	180 sec.
5.	85C	60 sec.
6.	65ºC	180 sec.
7.	97ºC	60 sec.
8.	65ºC	60 sec.
9.	80ºC	hold

- 10. Once program is completed, centrifuge sample tubes at 5,000 x g for 1 minute.
- 11. Remove supernatant to use as template for PCR. Recommend using 1-10ul of supernatant per 20-100ul amplification reaction. Alternatively, PCR can be performed directly in the GenePurgeDirect® treatment tube; add amplification reagents for a final volume of 100ul.
- 12. Perform amplification reaction according to your optimized protocol.
 - * GenePurgeDirect® treatment can alternatively be performed in a microwave, see page 2 for the protocol.

GenePurgeDirect® Protocol for Mouse Tail with Proteinase K Digestion

- 1. Cut a 1mm thick slice of mouse tail which has been washed with sterile water to remove surface contamination.
- 2. Place this section of tail in a 0.5ml PCR tube
- 3. Add 50µl 1XTE.
- 4. Resuspend the GenePurgeDirect® mixture by vortexing 2-3 seconds or inverting 5-10 times.
- 5. Add 20µl GenePurgeDirect®.
- 6. Add $2\mu l$ Proteinase K (conc.14-15 mg/ml) and mix well.
- 7. Digest on thermal cycler 1-3 hours @ 55°C.
- 8. Vortex to resuspend.
- 9. Heat inactivate 95°C for 10 minutes. (This is critical DO NOT SHORTEN TIME OR LOWER TEMPERATURE IF PK IS NOT COMPLETELY INACTIVATED IT WILL DIGEST TAQ.)
- 10. Centrifuge 5 minutes @ 10,000xg.

- 11. Carefully transfer supernatant to fresh 1.5ml sterile screw cap tube to use as template for PCR.
- 12. Use 1μ l, 2.5μ l, and 5μ l of supernatant as template for $3-100\mu$ l reactions. This is a range finding step. Thereafter use whichever performed best.
- 13. Perform amplification reaction according to your optimized protocol.

Microwave Lysis Protocol:

We have found that the microwave treatment of specimens affords a rapid sample preparation and facilitates the amplification of the more intractable types of specimens.

A. Evaluation of microwave

Perform the following experiment to determine the optimal conditions for your tubes and microwave.

- 1. Place 40µl DI water in the same type of tube that you will be using for GenePurgeDirect® treatment.
- 2. Overlay each tube with mineral oil to prevent evaporation.
- 3. Close the tubes, place in microwave safe rack (polyethylene or propylene) and heat on high for 5 minutes.
- 4. If any caps pop or tubes distort in any manner, then place a separate beaker in the microwave with 150ml of room temperature DI water and repeat the above 3 steps, the beaker of water serves as a heat ballast.
- 5. If tubes open or distort, reduce the power by 10% increments and increase time by 1-minute increments repeating step 4 until tubes no longer open or distort.

Note: Make sure the racks used in this procedure are MICROWAVE SAFE!

B. Microwave Protocol

- 1. Perform microwave procedure above for time and power conditions
- 2. Place 1µl of specimen with 20µl of GenePurgeDirect® into either a 0.5ml PCR tube or 1.5ml tube.
- 3. Vortex the tubes containing specimen and GenePurgeDirect® for ~10 seconds.
- 4. Overlay with mineral oil to prevent samples from evaporating.
- 5. Place the closed tubes in a microwave safe polyethylene or propylene rack. Make sure that the lids are loosely closed. If lids are closed too tightly tubes could rupture.
- 6. Place the rack in a microwave oven and heat at maximum power setting (setting should be based on the microwave evaluation results) for 5-7 minutes. Typically, 5 minutes if wattage is 900 or higher and 7 minutes if wattage is 500.
- 7. Remove rack from microwave and centrifuge the tubes at 5000xg for 5 minutes. After centrifuging samples, remove supernatant and use as DNA template.
- 8. Perform the amplification reaction

References:

Kamsler A, Daily D, Hochman A, Stern N, Shiloh Y, Rotman G, Barzilai A. Increased Oxidative Stress in Ataxia Telangiectasia Evidenced by Alterations in Redox State of Brains from Atm-deficient Mice. Cancer Research 2001 March; 61:1849 –1854.

Oravecz-Wilson K, Philips ST, Yilmaz OH, Ames HM, Li L, Crawford BD, Gauvin AM, Lucas PC, Sitwala K, Downing JR, Morrison SJ, Ross TS. Persistence of Leukemia-Initiating Cells in a Conditional Knockin Model of an Imatinib-Responsive Myeloproliferative Disorder. Cancer Cell 2009 August 4; 16(2): 137–148.

Sabo T, Lomnitski L, Nyska A, Ben S, Maronpot R, Shoham E, Roses A, Michaelson DM. Susceptibility of transgenic mice expressing human apolipoprotein E to closed head injury: The allele E3 is neuroprotective whereas E4 increases fatalities. Neuroscience 2000 November; 4(30):879-884

Stern N, Hochman A, Zemach N, Weizman N, Hammel I, Shiloh Y, Rotmanl G, Barzilai A. Accumulation of DNA Damage and Reduced Levels of Nicotine Adenine Dinucleotide in the Brains of Atm-deficient Mice. The Journal of Biological Chemistry 2002 January; 277:602-608.